Pathways and Roadblocks to Inclusivity – a Biomechanical Perspective William Bussone CBE Consultants, Inc. ### Introduction - Inclusivity including guests of all ages, sizes, abilities, and body types - Legal requirements - Safety - Guest relations - Accessibility ### Introduction - Biomechanics the application of mechanical engineering principles to the biology and physiology of living organisms - Analyze motions and forces affecting guests on a ride - human capabilities - incident analysis - restraint design - hazard analysis ### What we do - We see how people interact with a ride - Limitations - Capabilities - Interactions with restraints - We see shape and size - How that affects design - How that affects operations - ADA - "Capabilities necessary for safety" - Structure versus function ## **Topics** - Current state of the art - Obstacles and roadblocks - Paths forward ### State of the Art - Mandated accessibility - Americans with Disabilities Act (ADA) - Voluntary accessibility - Cognitive difference - Neuromuscular difference - Limb difference - Age/size accessibility - Functional requirements - Specific hazard analyses People come in a wide-variety of shapes and sizes! - No common language - Able-bodied, disabled, handicapped, limb-different, limb-typical, natural, functional, full, intact, bracing, holding, grasping - We do not agree on what words to use - We do not agree on what a word means - Without understanding each other, we cannot advance - Operators can increase revenue and decrease liability by letting everyone ride - Manufacturers can decrease liability (and costs) by letting no one ride - In practice, we operate by balancing these - How to let everyone who should, ride... - But not allow anyone who should not? ### Hazard analyses #### HAZARD RISK ASSESSMENT MATRIX | | Hazard Categories | | | | | | | | | |-------------------------|-------------------|----------|---------|-------|--|--|--|--|--| | | 1 | 2 | 3 | 4 | | | | | | | Frequency of Occurrence | Catastrophic | Critical | Serious | Minor | | | | | | | (A) Frequent | 1A | 2A | 3A | 4A | | | | | | | (B) Probable | 18 | 28 | 3B | 4B | | | | | | | (C) Occasional | 10 | 2C | 3C | 4C | | | | | | | (D) Remote | 1D | 2D | 3D | 4D | | | | | | | (E) Improbable | 1E | 2E | 3E | 4E | | | | | | | Hazard | Description | | Conse | Risk
Level | Current Control | Further Risk
Mitigation Measure | | Conse
quence | Residu
al risk
Level | |-----------------------------------|---|---|-------|---------------|--|---|---|-----------------|----------------------------| | | | | | | Measure | | | | | | Fire and
electrical
shock | During the welding process,
there is some flammable
substance (paper, thinner) or
welding on a wet floor. | В | 4 | High | No flammable substance, no paper near welding area and equipped with fire extinguisher. Welding warning sign, PPE and clean welding environment is a must. All welders have been attended the welder training from approved agent. | Provide in-house
fire safety, welding
safety and general
safety training for
all welders. | D | 2 | L | | Skin burn
injury | Welder or worker is affected. | с | 3 | Mode
rate | Welder must be equipped
with PPE. All welders have
attended the welder training
from approved agent. | Provide in-house
fire safety, welding
safety and general
safety training for
all welders. | D | 3 | М | | Inhalation | During the welding process,
worker inhales the welding
fume. | D | 2 | Low | Open area or with electric fan.
All welders have attended the
welding training from
approved agent. | Provide in-house
fire safety, welding
safety and general
safety training for
all welders. | E | 2 | L | | Radiation | During the welding process, the
worker's skin may be expose
partially to the extremely bright
flash. | D | 2 | Low | All welders must wear long
sleeves or arm cover or
coverall clothing to prevent
skin from directly being
exposed to the bright flash. | Provide in-house
fire safety, welding
safety and general
safety training for
all welders. | E | 2 | L | | Arc-eye or
eye hurt
by slat | During welding process, bright
flash light will appear. And after
each welding, the welder needs
to remove the slag. If the
welder does not have PPE, then
the eye will be damaged by the
bright flash or slag. | Е | 1 | Low | Welder has been equipped
with PPE. All welders have
attended the welder training
from approved agent. | Provide in-house
fire safety, welding
safety and general
safety training for
all welders. | E | 1 | L | - May not explore all consequences - A frequent, serious hazard has the same risk as a catastrophic, occasional one - But a hazard analysis may only describe the cause and mitigation for one of these - Ride countermeasures may be poorly explained - Rider requirements may be ambiguous - Bracing versus holding - What is a limb? - Structure vs function - Rider capabilities are hard to predict - You each best understand your part of the ride experience - Rider: your abilities and needs - Operator: your ride's operational history and behavior in practice - Manufacturer: your ride's conception and design - OEM: your component's conception and design (ex: ride vehicle) - Communicate - Rider and operator - Operator and manufacturer - Manufacturer and OEM - Are we reporting all the incidents and near-incidents we should be? - By standard and statute ### Where we are now - Biomechanical issues - People vary in shape, size, and capability - Body configuration can also vary in hard-to-predict ways - Ride designs make fundamental assumptions about - How riders are shaped - What capabilities riders have (structural and functional and cognitive) - Ride operators interpret the ride design using limited information ### Where we are now - Knowledge gaps - Each stakeholder best knows their own domain... - But does not always tell the others - Mistaken assumptions - Sometimes anatomic requirements are really functional requirements... - But not always ### Where we are now - Do the best with what we have - Our knowledge of our riders - Demographics - Accessibility needs/demands - Functional analysis - Our knowledge of our equipment - Our knowledge of our history and experience - Data collection - Analysis of ride-specific hazards, parameters, and operating requirements - Engineering analysis - Integrate all of the above into a reasonable go/no-go criterion ### **Paths Forward** - Find a common language - Define ride and rider requirements in functional terms - What can a rider do, not what do they have - What must a vehicle/seat/restraint achieve in order to succeed - Easier to use and more flexible than anatomic requirements - Clear and specific - Hazard Analyses should clearly define the problem and the solution - Multiple versions of same outcome risk - Anatomic requirements, if necessary, should be specific - Does "to the elbow" mean a full humerus, some elbow, or a complete elbow? - Everyone benefits from better communication ### **Paths Forward** - Communicate! - Review the hazard analysis - If you do not know ask! - Talk to your manufacturer - They know what the ride is supposed to be - They know what they have seen in other installations - Talk to your buyer/operator - They know what their ride actually is - They know what incidents/near-misses they have seen - Learn about your riders - Track near misses, too - If you do know tell! - A near incident may become the next incident - Communicate to the manufacturer! ### The End!